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1. Does there exist a non-constant entire function f such that |f(z3)| ≤ 1 + |z| for all z?

Answer: Putting z3 = w, rewrite the inequality as

|f(w)| ≤ 1 + |w| 13

for all w ∈ C. Here f is entire. So it has a power series expansion around zero. Let f(z) =
∑∞
k=0 akz

k

be the power series expansion.

On a disc of radius R we have
|f(w)| ≤ 1 + |w| 13 ≤ 1 +R

1
3 .

Thus by Cauchy’s estimate
|fk(0)|
k!

= |ak| ≤
1 +R

1
3

Rk
.

This is true for any R (as f is entire) and hence ak = 0 for any k ≥ 1. Therefore f is constant. Hence
there does not exist any non-constant entire function such that |f(z3)| ≤ 1 + |z| for all z.

2. Prove that if γ : [0, 1]→ C is a continuously differentiable then f(z) =
∫
γ
g(ζ)
ζ−zdζ defines a holomorphic

function on C \ γ∗ for any continuous function g on γ∗.

Answer: Since γ∗ is compact and g is continuous and hence g is bounded on γ∗. It is easy to show that

the function f(z) =
∫
γ
g(ζ)
ζ−zdζ is continuous. Let z ∈ C \ γ∗ and choose h such that z + h ∈ C \ γ∗.

Consider

f(z + h)− f(z)

h
=

1

h

∫
γ

g(ζ)
h

(ζ + h− z)(ζ − z)
dζ

=

∫
γ

g(ζ)
1

(ζ + h− z)(ζ − z)
dζ (1)

Taking h → 0 and using the continuity we have from (1) that limh→0
f(z+h)−f(z)

h exists and f
′
(z) =∫

γ
g(ζ) 1

(ζ−z)2 dζ. This completes the proof.

3. If f ∈ C(Ū) ∩H(U) and |f(z) − 1 − 2z| < 1 for |z| = 1, then prove that f has a unique zero in the
unit disc U .

Answer: Let g(z) = 2z + 1. Then for |z| = 1, |g(z)| ≥ 1. Since f is continuous on Ū , we can extend f to
be a holomorphic on an open region containing Ū and g is also holomorphic on that region. Therefore
we have

|f(z)− g(z)| < |g(z)|
for all |z| = 1. Now g has only one zero in the disc. Using Rouche’s theorem we conclude that f has only
one zero in the disc U .

4. Let zn ∈ C \ {0} for all n. Prove that
∏∞
n=1 zn converges to a nonzero number if and only if∑∞

n=1 Log(zn) converges.

Answer: Suppose
∑∞
n=1 Log(zn) converges. Let sn =

∑n
k=1 Log(zk) and sn converges to s. Then

exp(sn)→ exp(s). But exp(sn) =
∏n
k=1 zk. Therefore

∏∞
n=1 zn converges and converges to exp(s) 6= 0.

Conversely, suppose
∏∞
n=1 zn converges to a nonzero number z = reiθ, −π < θ ≤ π. Then zn → 1 as

n → ∞. WLOG we can choose Re(zn) > 0 for all n. Let rn =
∏n
k=1 zk and `(rn) = Log|rn| + iθn,
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where θ − π < θn ≤ θ + π. Now exp(sn) = rn and hence sn = `(rn) + 2πikn for some integer kn. Again
sn − sn−1 = Log(zn) → 0 as n → ∞. Also `(pn) − `(pn−1) → 0. Hence kn − kn−1 → 0, but kn are
integers so there exists N and k such that km = kn = k for m,n ≥ N . Hence sn → `(z) + 2πik. Thus∑∞
n=1 Log(zn) converges.

5. Let f and g be entire functions, ε,∆ ∈ (0,∞) and 1 ≤ |f(z)| ≤ |g(z)||z|−1−ε for |z| ≥ ∆. Prove that
the sum of the residues of f

g at all its poles is 0.

Answer: We can rewrite the inequality as follows:

0 < ∆1+ε ≤ |z|1+ε ≤ |z|1+ε|f(z)| ≤ |g(z)|

for |z| ≥ ∆. This shows that f
g does not have pole for |z| ≥ ∆. So it is enough to consider on |z| < ∆.

Now

1

2πi

∫
∂∆

f

g
=

N∑
k=1

Res(zk,
f

g
),

where ∂∆ is the boundary of the region of radius ∆ and zk are the poles of f
g .

1

2π

∫
∂∆

|f(z)|
|g(z)|

dz ≤ 1

2π

∫
∂∆

1

|z|1+ε
dz ≤ 1

∆ε
.

This is true for any ∆ > 0. Therefore we have the required result.

6. Let Ω = {z : Re(z) > 0}. Give an example of a bijection from Ω onto U which is bi-holomorphic.

Answer: Consider a function from Ω → U by z 7→ z−1
z+1 . Then

∣∣∣ z−1
z+1

∣∣∣ = |z|2−2Re(z)+1
|z|2+2Re(z)+1 < 1 as Re(z) > 0.

Clearly this map is bijective and holomorphic.

The inverse map from U to Ω is defined by w 7→ 1+w
1−w . For |w| < 1, Re

(
1+w
1−w

)
= 1−|w|2

1+|w|2 > 0. Clearly, it

is holomorphic. This is the required example.

7. Evaluate
∫
γ

3z3+2
(z−1)(z2+9)dz, where γ is a circle of radius 4 with center 0.

Answer: Note that there are only three simple poles namely 1, 3i and −3i. From the Residue formula,
we have ∫

γ

f = 2πi[Res(f, 1) +Res(f, 3i) +Res(f,−3i)],

where f(z) = 3z3+2
(z−1)(z2+9) . Now by simple calculation, we have

Res(f, 1) = lim
z→1

(z − 1)f(z) =
1

2

Res(f, 3i) = lim
z→3i

(z − 3i)f(z) =
−81i+ 2

−18− 6i

Res(f,−3i) = lim
z→−3i

(z + 3i)f(z) =
81i+ 2

−18 + 6i
.

Therefore
∫
γ
f = 6πi.

8. Evaluate
∫∞

0
x2

x6+1dx by the method of residues.

Answer. Since the integrand is an even function,
∫∞
−∞

x2

x6+1dx = 2
∫∞

0
x2

x6+1dx. Let f(z) = z2

z6+1 . Clearly

f has simple poles at zk = exp( (2k+1)
6 ) for k = 0, 1, 2, 3, 4, 5. Consider closed semicircle of radius R > 1
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with center zero and traversed in anti clockwise. Then z1, z2 and z3 are the poles inside the semicircle.
Hence from the Residue formula, we have∫

γ

f = 2πi[Res(f, z1) +Res(f, z2) +Res(f, z3)] =
π

3
.

Now applying the definition of the line integral,∫
γ

f =

∫ R

−R

x2

x6 + 1
dx+

∫ π

0

R2ei2πtReit

1 +R6e6it
dt. (2)

For 0 ≤ t ≤ π, 1+R6e6it lies on the circle center at 1 of radius R6. Hence |1+R6e6it| ≥ R6−1. Therefore∣∣∣∣∫ π

0

R2ei2πtiReit

1 +R6e6it
dt

∣∣∣∣ ≤ πR3

R6 − 1

which tends to zero as R→∞. Therefore as R→∞, we have from (2)∫ ∞
−∞

x2

x6 + 1
dx =

∫
γ

f =
π

3
.

Hence ∫ ∞
0

x2

x6 + 1
dx =

1

2

∫
γ

f =
π

6
.
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